

BOARD OF STUDIES NEW SOUTH WALES

2012

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks – 100

Section I Pages 2–8

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

(Section II) Pages 9–19

90 marks

- Attempt Questions 11–16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 Let z = 5 - i and w = 2 + 3i.

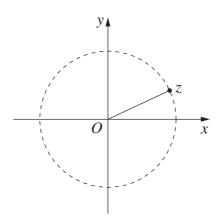
What is the value of $2z + \overline{w}$?

- (A) 12 + i
- (B) 12 + 2*i*
- (C) 12 4i
- (D) 12 5*i*
- 2 The equation $x^3 y^3 + 3xy + 1 = 0$ defines y implicitly as a function of x.

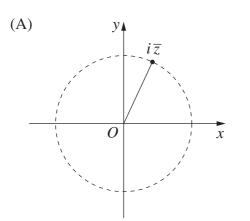
What is the value of $\frac{dy}{dx}$ at the point (1, 2)?

- (A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$
- (D) 1

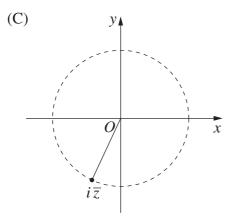
3 The complex number z is shown on the Argand diagram below.

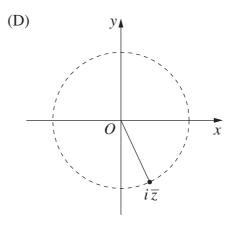


Which of the following best represents $i\overline{z}$?

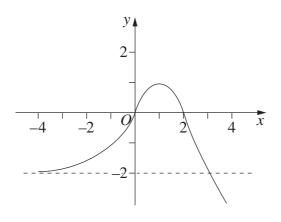




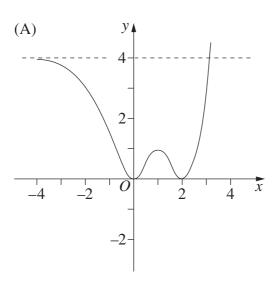


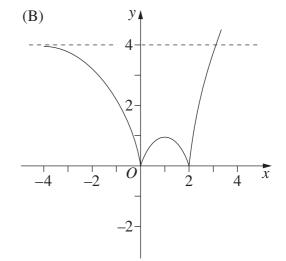


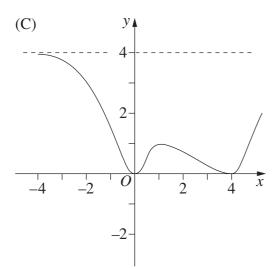
4 The graph y = f(x) is shown below.

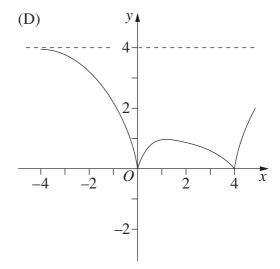


Which of the following graphs best represents $y = [f(x)]^2$?









5 The equation $2x^3 - 3x^2 - 5x - 1 = 0$ has roots α , β and γ .

What is the value of $\frac{1}{\alpha^3 \beta^3 \gamma^3}$?

(A)
$$\frac{1}{8}$$

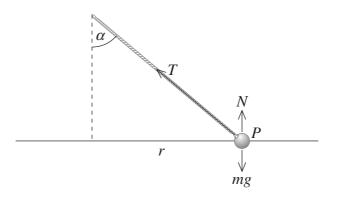
(B) $-\frac{1}{8}$
(C) 8
(D) -8

6 What is the eccentricity of the hyperbola $\frac{x^2}{6} - \frac{y^2}{4} = 1$?

(A)
$$\frac{\sqrt{10}}{2}$$

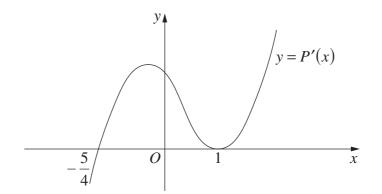
(B) $\frac{\sqrt{15}}{3}$
(C) $\frac{\sqrt{3}}{3}$
(D) $\frac{\sqrt{13}}{3}$

7 A particle *P* of mass *m* attached to a string is rotating in a circle of radius *r* on a smooth horizontal surface. The particle is moving with constant angular velocity ω . The string makes an angle α with the vertical. The forces acting on *P* are the tension *T* in the string, a reaction force *N* normal to the surface and the gravitational force *mg*.



Which of the following is the correct resolution of the forces on P in the vertical and horizontal directions?

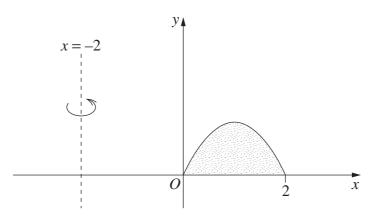
- (A) $T\cos\alpha + N = mg$ and $T\sin\alpha = mr\omega^2$
- (B) $T\cos\alpha N = mg$ and $T\sin\alpha = mr\omega^2$
- (C) $T\sin\alpha + N = mg$ and $T\cos\alpha = mr\omega^2$
- (D) $T\sin\alpha N = mg$ and $T\cos\alpha = mr\omega^2$
- 8 The following diagram shows the graph y = P'(x), the derivative of a polynomial P(x).



Which of the following expressions could be P(x)?

- (A) $(x-2)(x-1)^3$
- (B) $(x+2)(x-1)^3$
- (C) $(x-2)(x+1)^3$
- (D) $(x+2)(x+1)^3$

9 The diagram shows the graph y = x(2 - x) for $0 \le x \le 2$. The region bounded by the graph and the *x*-axis is rotated about the line x = -2 to form a solid.



Which integral represents the volume of the solid?

(A)
$$2\pi \int_{0}^{2} x(2-x)^{2} dx$$

(B) $2\pi \int_{0}^{2} x^{2}(2-x) dx$
(C) $2\pi \int_{0}^{2} x(2-x)(2+x) dx$
(D) $2\pi \int_{0}^{2} x(2-x)(x-2) dx$

10 Without evaluating the integrals, which one of the following integrals is greater than zero?

(A)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x}{2 + \cos x} dx$$

(B) $\int_{-\pi}^{\pi} x^3 \sin x dx$
(C) $\int_{-1}^{1} \left(e^{-x^2} - 1 \right) dx$
(D) $\int_{-2}^{2} \tan^{-1} \left(x^3 \right) dx$

Section II

90 marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Express
$$\frac{2\sqrt{5}+i}{\sqrt{5}-i}$$
 in the form $x+iy$, where x and y are real. 2

(b) Shade the region on the Argand diagram where the two inequalities 2

$$|z+2| \ge 2$$
 and $|z-i| \le 1$

both hold.

(c) By completing the square, find
$$\int \frac{dx}{x^2 + 4x + 5}$$
. 2

(d) (i) Write
$$z = \sqrt{3} - i$$
 in modulus–argument form. 2
(ii) Hence express z^9 in the form $x + iy$, where x and y are real. 1

(e) Evaluate
$$\int_{0}^{1} \frac{e^{2x}}{e^{2x} + 1} dx$$
. 3

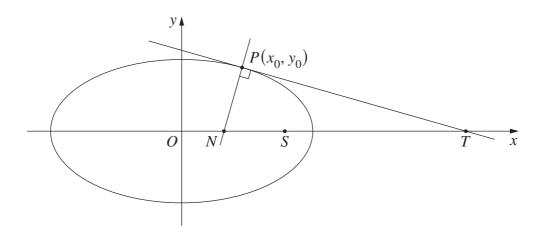
- (f) Sketch the following graphs, showing the *x* and *y*-intercepts.
 - (i) y = |x| 1 1

(ii)
$$y = x(|x|-1)$$
 2

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Using the substitution
$$t = \tan \frac{\theta}{2}$$
, or otherwise, find $\int \frac{d\theta}{1 - \cos \theta}$. 3

(b) The diagram shows the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with a > b. The ellipse has focus *S* and eccentricity *e*. The tangent to the ellipse at $P(x_0, y_0)$ meets the *x*-axis at *T*. The normal at *P* meets the *x*-axis at *N*.



(i) Show that the tangent to the ellipse at P is given by the equation

$$y - y_0 = -\frac{b^2 x_0}{a^2 y_0} \left(x - x_0\right)$$

2

2

2

(ii) Show that the *x*-coordinate of *N* is x_0e^2 .

(iii) Show that
$$ON \times OT = OS^2$$
.

Question 12 continues on page 11

(c) For every integer $n \ge 0$ let

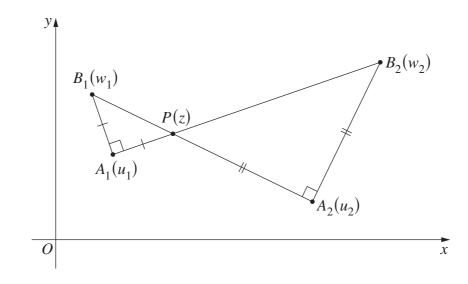
$$I_n = \int_1^{e^2} \left(\log_e x \right)^n dx \, .$$

Show that for $n \ge 1$

$$I_n = e^2 2^n - n I_{n-1}.$$

On the Argand diagram the points A_1 and A_2 correspond to the distinct complex (d) numbers u_1 and u_2 respectively. Let P be a point corresponding to a third complex number z.

Points B_1 and B_2 are positioned so that $\triangle A_1 P B_1$ and $\triangle A_2 B_2 P$, labelled in an anti-clockwise direction, are right-angled and isosceles with right angles at A_1 and A_2 , respectively. The complex numbers w_1 and w_2 correspond to B_1 and B_2 , respectively.



(i) Explain why
$$w_1 = u_1 + i(z - u_1)$$
. **1**

(ii) Find the locus of the midpoint of B_1B_2 as P varies.

End of Question 12

2

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) An object on the surface of a liquid is released at time t = 0 and immediately sinks. Let x be its displacement in metres in a downward direction from the surface at time t seconds.

The equation of motion is given by

$$\frac{dv}{dt} = 10 - \frac{v^2}{40},$$

where v is the velocity of the object.

(i)

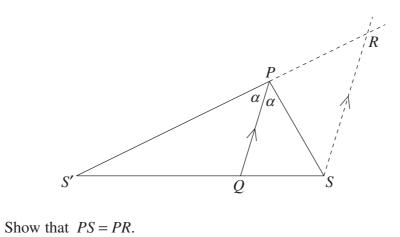
(i) Show that
$$v = \frac{20(e^t - 1)}{e^t + 1}$$
. 4

(ii) Use
$$\frac{dv}{dt} = v \frac{dv}{dx}$$
 to show that $x = 20 \log_e \left(\frac{400}{400 - v^2}\right)$. 2

2

1

- (iii) How far does the object sink in the first 4 seconds?
- (b) The diagram shows $\triangle S'SP$. The point *Q* is on *S'S* so that *PQ* bisects $\angle S'PS$. The point *R* is on *S'P* produced so that *PQ* || *RS*.

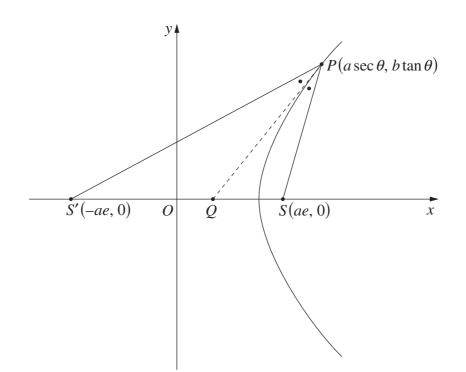


(ii) Show that $\frac{PS}{QS} = \frac{PS'}{QS'}$. 2

Question 13 continues on page 13

Question 13 (continued)

(c) Let *P* be a point on the hyperbola given parametrically by $x = a \sec \theta$ and $y = b \tan \theta$, where *a* and *b* are positive. The foci of the hyperbola are S(ae, 0) and S'(-ae, 0) where *e* is the eccentricity. The point *Q* is on the *x*-axis so that *PQ* bisects $\angle SPS'$.



(i) Show that $SP = a(e \sec \theta - 1)$.

(ii) It is given that $S'P = a(e \sec \theta + 1)$. Using part (b), or otherwise, show 2 that the *x*-coordinate of *Q* is $\frac{a}{\sec \theta}$.

1

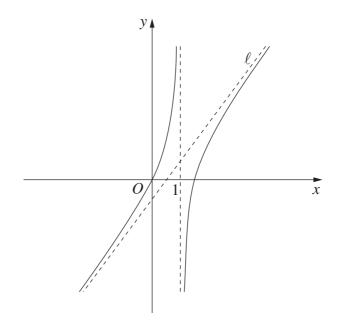
(iii) The slope of the tangent to the hyperbola at *P* is $\frac{b \sec \theta}{a \tan \theta}$. (Do NOT 1 prove this.)

Show that the tangent at P is the line PQ.

End of Question 13

(a) Find
$$\int \frac{3x^2 + 8}{x(x^2 + 4)} dx.$$
 3

(b) The diagram shows the graph $y = \frac{x(2x-3)}{x-1}$. The line ℓ is an asymptote.



(i) Use the above graph to draw a one-third page sketch of the graph

$$y = \frac{x-1}{x(2x-3)}$$

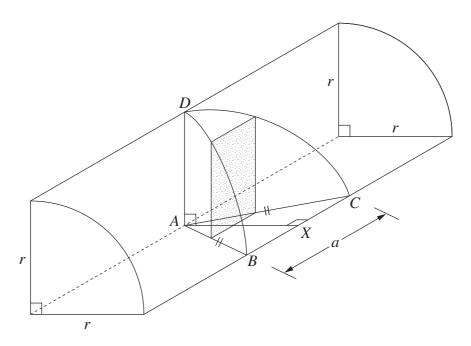
indicating all asymptotes and all x- and y-intercepts.

(ii) By writing $\frac{x(2x-3)}{x-1}$ in the form $mx+b+\frac{a}{x-1}$, find the equation 2 of the line ℓ .

Question 14 continues on page 15

(c) The solid *ABCD* is cut from a quarter cylinder of radius *r* as shown. Its base is an isosceles triangle *ABC* with AB = AC. The length of *BC* is *a* and the midpoint of *BC* is *X*.

The cross-sections perpendicular to *AX* are rectangles. A typical cross-section is shown shaded in the diagram.

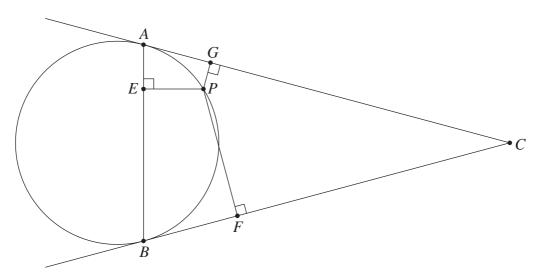


Find the volume of the solid ABCD.

Question 14 continues on page 16

Question 14 (continued)

(d) The diagram shows points A and B on a circle. The tangents to the circle at A and B meet at the point C. The point P is on the circle inside $\triangle ABC$. The point E lies on AB so that $AB \perp EP$. The points F and G lie on BC and AC respectively so that $FP \perp BC$ and $GP \perp AC$.



Copy or trace the diagram into your writing booklet.

(i) Show that
$$\triangle APG$$
 and $\triangle BPE$ are similar. 2

2

(ii) Show that
$$EP^2 = FP \times GP$$
.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Prove that
$$\sqrt{ab} \le \frac{a+b}{2}$$
, where $a \ge 0$ and $b \ge 0$. 1

- (ii) If $1 \le x \le y$, show that $x(y-x+1) \ge y$.
- (iii) Let *n* and *j* be positive integers with $1 \le j \le n$. Prove that

$$\sqrt{n} \leq \sqrt{j(n-j+1)} \leq \frac{n+1}{2}.$$

(iv) For integers $n \ge 1$, prove that

$$\left(\sqrt{n}\right)^n \le n! \le \left(\frac{n+1}{2}\right)^n$$

(b) Let $P(z) = z^4 - 2kz^3 + 2k^2z^2 - 2kz + 1$, where k is real. Let $\alpha = x + iy$, where x and y are real.

Suppose that α and $i\alpha$ are zeros of P(z), where $\overline{\alpha} \neq i\alpha$.

(i) Explain why $\overline{\alpha}$ and $-i\overline{\alpha}$ are zeros of P(z). 1

(ii) Show that
$$P(z) = z^2 (z - k)^2 + (kz - 1)^2$$
. 1

(iii) Hence show that if
$$P(z)$$
 has a real zero then

$$P(z) = (z^{2} + 1)(z + 1)^{2} \text{ or } P(z) = (z^{2} + 1)(z - 1)^{2}.$$
(i.) Give that the probability of $P(z)$ is a real zero then $1 = 1$.

(iv) Show that all zeros of
$$P(z)$$
 have modulus 1. 2

(v) Show that k = x - y. 1

(vi) Hence show that
$$-\sqrt{2} \le k \le \sqrt{2}$$
. 2

1

2

2

Question 16 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) In how many ways can *m* identical yellow discs and *n* identical black **1** discs be arranged in a row?
 - (ii) In how many ways can 10 identical coins be allocated to 4 different 1 boxes?

(b) (i) Show that
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$$
 for $|x| < 1$ and $|y| < 1$. 1

(ii) Use mathematical induction to prove

$$\sum_{j=1}^{n} \tan^{-1}\left(\frac{1}{2j^2}\right) = \tan^{-1}\left(\frac{n}{n+1}\right)$$

3

for all positive integers *n*.

(iii) Find
$$\lim_{n \to \infty} \sum_{j=1}^{n} \tan^{-1} \left(\frac{1}{2j^2} \right).$$
 1

Question 16 continues on page 19

Question 16 (continued)

(c) Let *n* be an integer where n > 1. Integers from 1 to *n* inclusive are selected randomly one by one with repetition being possible. Let P(k) be the probability that exactly *k* different integers are selected before one of them is selected for the second time, where $1 \le k \le n$.

(i) Explain why
$$P(k) = \frac{(n-1)!k}{n^k(n-k)!}$$
. 2

(ii) Suppose
$$P(k) \ge P(k-1)$$
. Show that $k^2 - k - n \le 0$. 2

(iii) Show that if
$$\sqrt{n+\frac{1}{4}} > k-\frac{1}{2}$$
 then the integers *n* and *k* satisfy $\sqrt{n} > k-\frac{1}{2}$.

(iv) Hence show that if 4n + 1 is not a perfect square, then P(k) is greatest 2 when k is the closest integer to \sqrt{n} .

You may use part (iii) and also that $k^2 - k - n > 0$ if P(k) < P(k-1).

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x, x > 0$$